Richard Feynman on thinking processes.

Feynman said that there are no miracle people, and anyone can do what he did if they put their mind to it (my thoughts here). Yet there’s one domain in which Feynman clearly had a natural gift in — curiosity! This is exemplified by the little experiments he describes in the video below, where he learned how accurate his sense of time was and what things affected this sense. He’d count to a minute in his head and learn that when he got to 48, a minute had passed. Then he tested what else he could do while doing this, and he could read but not talk.

At the end of the video he says “Now I’m starting to talk like a psychologist, and I know nothing about that!” Let’s test that theory. Here’s the video.

For the lazy, when Feynman told mathematician John Tukey about this, Tukey could do the reverse — talk but not read. The reason was that Feynman would talk to himself in his head, while Tukey would see an image of a clock ticking over. Feynmann suggests this could be because people think differently, and if you’re having trouble getting a point across, it might be because what your saying is more difficult to translate into the other person’s favoured modality than it is your own.

I don’t know if he’s right about that latter point, but he’s certainly right about the rest. We have multiple cognitive “modules” in the brain which are specialised to different functions, and it’s possible to bring different modules to bear on a task. For example, our working memory, which is the cognitive process in use whenever you’re consciously “doing” something (like Feynman’s counting task) has a number of different components. I discuss these here. Each of these components has limitations, but your brain can use all the components at the same time.

When Feynman started counting in his head he was employing the phonological loop, and when counting lines in a book he’s using the visuo-spatial sketch pad. These are different “modules,” that’s why he could do both tasks at the same time. Talking uses the phonological loop, so when he tried that, he’s asking too much of the module (which in most people would be fully occupied by the counting) causing him to mess up on the task.

For Tukey, the reverse is true. He visualised a clock, occupying the visuo-spatial sketch pad but leaving the phonological loop free. So he could talk freely but as soon as he tried to read, he messed up.

Some experiments even take advantage of this fact, by having participants count out-loud as they perform some other task, so they occupy the phonological loop as they test some other cognitive module.

It’s also true that different people have different preferences in terms of how the process information, and cultural differences play a big role in this. So at the end of the video, Feynman was being a little unfair on himself when he said he knew nothing about psychology!

Daphne Bavelier gives a nice overview of the cognitive benefits of video games

If you’re familiar with the research on the cognitive benefits of video games, you can probably skip this one. If not, here’s a good way for you to spend the next 18 minutes, and maybe break a few preconceptions you might have about the usefulness of gaming. Daphne Bavelier talks about how playing action video games like Call of Duty and Black Ops can improve various cognitive capacities.

I was particularly surprised by these two interesting facts on gaming in general:

  • The average age of a gamer is 33 (makes sense — in the 80s, games were played almost exclusively by kids. How old are those kids now?)
  • One month after the release of COD: Black Ops, the game had been played for 600 million hours. That’s 68,000 years.

There are a few problems with this research though, which I discussed here.